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Integrable top equations associated with projective
geometry overZ2
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Department of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-
0043, Japan
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Abstract. We give a series of integrable top equations associated with the projective geometry
overZ2 as a(2n − 1)-dimensional generalization of the three-dimensional Euler top equations.
The general solution of the(2n − 1)-dimensional top is shown to be given by an integration
over a Riemann surface with genus(2n−1 − 1)2.

1. (2n − 1)-dimensional top equations

Recently we discovered an apparently new integrable set of evolution equations in seven
dimensions, which are an analogue of the well known three-dimensional Euler top [1, 2].
The seven-dimensional top arises from the dimensional reduction of the eight-dimensional
spin(7) invariant self-dual Yang–Mills (SDYM) equations in [3], just as the three-
dimensional top comes from the reduction of the four-dimensional SDYM to differential
equations depending only upon one variable. The integrability of the three-dimensional top
is ensured by the existence of the Lax formulation of the four-dimensional SDYM [4], while
there is no such first-order structure behind the eight-dimensional SDYM [5]. Nevertheless
the seven-dimensional top has been shown to have sufficient conserved quantities to permit
full integrability [1] and its general solution is given by a non-hyperelliptic differential
equation corresponding to a Riemann surface with genus 9 [2].

The derivation of the top equations from the SDYM shows their connection with the ex-
istence of the division algebras, the three-dimensional system arising from the quaternionic
algebra, the seven-dimensional one from the octonions, which seems to suggest that no fur-
ther integrable top system in more than seven dimensions should exist. In this paper, how-
ever, we demonstrate that a generalization of our previous results to general 2n − 1 dimen-
sions is possible and is associated rather with then-dimensional projective space overZ2.

We take the projective spaceZ2Pn−1 with homogeneous coordinates(z0, z1, . . . , zn−1),
where zi is either 0, 1 and calculations are performed in arithmetic mod 2. The space
Z2Pn−1 consists of a finite number of pointsei (i = 1, . . . ,2n − 1) with the multiplication
operationeiej defined by the sum of their associated coordinates.

For the three-dimensional (n = 2) case, we have three points,

e1 = (0, 1) e2 = (1, 0) e3 = (1, 1) (1)
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Figure 1. Seven-point plane.

with the multiplication rule,

eiej = ε2
ijkek (2)

where εijk is the structure constant of thesu(2) (quaternion) algebra. Using this
structure constant, we obtain the three-dimensional Euler top equations with variables
(ω1(t), ω2(t), ω3(t)),

d

dt
ωi = 1

2
ε2
ijkωjωk. (3)

In the seven-dimensional (n = 3) case, we have seven points,

e1 = (0, 0, 1) e2 = (0, 1, 0) e3 = (1, 0, 0) e4 = (1, 1, 1)

e5 = (1, 1, 0) e6 = (1, 0, 1) e7 = (0, 1, 1)
(4)

with the relation

eiej = c2
ijkek (5)

wherecijk is equal to a realization of the totally antisymmetric structure constant appearing
in the Cayley (octonion) algebra,

c127= c631= c541= c532= c246= c734= c567= 1 (others zero). (6)

The relation (5) can be read off from the diagram in figure 1, the seven-point plane with
seven points and seven lines; three points lie on each line and three lines pass through each
point. Replacingεijk in (3) by the constantcijk, we obtain the set of seven equations for a
seven-dimensional top [1, 2],

d

dt
ω1 = ω2ω7+ ω6ω3+ ω5ω4

d

dt
ω2 = ω7ω1+ ω5ω3+ ω4ω6

d

dt
ω3 = ω1ω6+ ω2ω5+ ω4ω7

d

dt
ω4 = ω1ω5+ ω6ω2+ ω7ω3

d

dt
ω5 = ω4ω1+ ω3ω2+ ω6ω7

d

dt
ω6 = ω3ω1+ ω2ω4+ ω7ω5

d

dt
ω7 = ω1ω2+ ω3ω4+ ω5ω6.

(7)

In a similar fashion to the above three-dimensional and seven-dimensional cases, we
can obtain 2n − 1 equations for a(2n − 1)-dimensional top. The structure of the higher-
dimensional tops can be understood from the(2n − 1)-point hyperplane diagram, which is
an extension of the seven-point plane and consists of 2n − 1 points and 2n − 1 (2n−1− 1)-
point hyperplanes, where 2n−1 − 1 points lie on each(2n−1 − 1)-point plane and 2n−1 − 1
(2n−1− 1)-point hyperplanes pass through each point.
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For example, in the 15-dimensional (n = 4) case with an appropriate labelling of 15
points inZ2P3, we have a 15-point tetrahedral space containing the following 15 seven-point
planes assigned by seven points in them,

(1, 2, 3, 4, 5, 6, 7) (1, 2, 8, 11, 10, 9, 7) (1, 3, 8, 13, 12, 9, 6)

(2, 3, 8, 14, 12, 10, 5) (1, 2, 13, 14, 15, 12, 7) (1, 3, 14, 11, 10, 15, 6)

(1, 4, 8, 14, 15, 9, 5) (1, 4, 13, 11, 10, 12, 5) (2, 3, 11, 13, 15, 9, 5)

(2, 4, 8, 13, 15, 10, 6) (2, 4, 11, 14, 12, 9, 6) (3, 4, 8, 11, 15, 12, 7)

(3, 4, 9, 10, 14, 13, 7) (5, 6, 8, 11, 13, 14, 7) (5, 6, 9, 10, 12, 15, 7)

(8)

where thepth element in each of the above 15 brackets is placed on the pointp in figure 1.
The form of the 15-dimensional top equations derived from the 15-point hyperplane is

ω̇1 = ω2ω7+ ω3ω6+ ω5ω4+ ω8ω9+ ω10ω11+ ω12ω13+ ω14ω15

ω̇2 = ω1ω7+ ω3ω5+ ω4ω6+ ω8ω10+ ω11ω9+ ω12ω14+ ω15ω13

ω̇3 = ω1ω6+ ω2ω5+ ω7ω4+ ω8ω12+ ω9ω13+ ω10ω14+ ω11ω15

ω̇4 = ω5ω1+ ω2ω6+ ω7ω3+ ω8ω15+ ω9ω14+ ω10ω13+ ω11ω12

ω̇5 = ω1ω4+ ω2ω3+ ω7ω6+ ω8ω14+ ω9ω15+ ω10ω12+ ω11ω13

ω̇6 = ω1ω3+ ω2ω4+ ω7ω5+ ω8ω13+ ω9ω12+ ω10ω15+ ω11ω14

ω̇7 = ω1ω2+ ω3ω4+ ω6ω5+ ω8ω11+ ω9ω10+ ω12ω15+ ω13ω14

ω̇8 = ω1ω9+ ω2ω10+ ω3ω12+ ω4ω15+ ω5ω14+ ω6ω13+ ω7ω11

ω̇9 = ω1ω8+ ω2ω11+ ω3ω13+ ω4ω14+ ω5ω15+ ω6ω12+ ω7ω10

ω̇10 = ω1ω11+ ω2ω8+ ω3ω14+ ω4ω13+ ω5ω12+ ω6ω15+ ω7ω9

ω̇11 = ω1ω10+ ω2ω9+ ω3ω15+ ω4ω12+ ω5ω13+ ω6ω14+ ω7ω8

ω̇12 = ω1ω13+ ω2ω14+ ω3ω8+ ω4ω11+ ω5ω10+ ω6ω9+ ω7ω15

ω̇13 = ω1ω12+ ω2ω15+ ω3ω9+ ω4ω10+ ω5ω11+ ω6ω8+ ω7ω14

ω̇14 = ω1ω15+ ω2ω12+ ω3ω10+ ω4ω9+ ω5ω8+ ω6ω11+ ω7ω13

ω̇15 = ω1ω14+ ω2ω13+ ω3ω11+ ω4ω8+ ω5ω9+ ω6ω10+ ω7ω12.

(9)

2. General solution of the(2n − 1)-dimensional top

2.1. Integrability

To show the integrability of the(2n − 1)-dimensional top and its general solution, it is
convenient to work with a set of 2n− 1 variablesai , instead of theωi ’s. The rule to define
theai ’s is to pick up 2n−1 sets of 2n−1 ωi ’s which do not lie on a(2n−1−1)-point subplane
in the (2n − 1)-point hyperplane and to assignai to the sum of all 2n−1 ωi ’s in each of the
2n − 1 sets. For example, in the three-dimensional case,

a1 = ω2+ ω3 a2 = ω3+ ω1 a3 = ω1+ ω2 (10)

and in the seven-dimensional case,

a1 = ω3+ ω4+ ω5+ ω6 a2 = ω1+ ω2+ ω5+ ω6

a3 = ω1+ ω3+ ω5+ ω7 a4 = ω2+ ω4+ ω5+ ω7

a5 = ω2+ ω3+ ω6+ ω7 a6 = ω1+ ω4+ ω6+ ω7

a7 = ω1+ ω2+ ω3+ ω4.

(11)
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Similarly, 15 variablesai in the 15-dimensional top can be easily read off from the 15-point
hyperplane defined in (8).

Using the variablesai , the (2n − 1)-dimensional top equations are re-expressed as

ȧi = ai(S − ai) S = 1

2n−1

2n−1∑
j=1

aj (12)

and the equations of motion for the difference of theai ’s are

˙(ai − ak) = (ai − ak)(S − ai − ak). (13)

We introduce the quantityW with the constantsρi andχij ,

W =
∑
i

ρi ln ai +
∑
i<j

χij ln (ai − aj ). (14)

The conditionẆ = 0 leads us to(2n − 1)(2n−1− 1) conserved quantitiesNij ,

Nij = T (ai − aj )/aiaj T =
( 2n−1∏

k=1

ak

) 1
2n−1−1

. (15)

Although theNij are not independent, they are sufficient to construct a basis of 2n − 2
independent conserved quantities, thus guaranteeing the integrability of the(2n − 1)-
dimensional top. Specifically, all theNij can be expressed in terms ofN1j (j =
2, . . . ,2n − 1) through the relation

Nij = N1j −N1i (16)

which means that any conserved quantities in the system can be constructed from these
2n − 2 quantitiesN1j . In particular it is possible to define 2n − 1 polynomial conserved
quantitiesγi from Nij as

γi = Nj1k1Nj2k2 . . . Nj2n−1−1k2n−1−1
= ai(aj1 − ak1)(aj2 − ak2) . . . (aj2n−1−1

− ak2n−1−1
) (17)

where(jp, kp), (jp < kp, p = 1, . . . ,2n−1− 1) lie on the respective 2n−1− 1 lines through
the point i. The polynomialsγi are of order 2n−1. There is, of course, one functional
relationship connecting these 2n − 1 expressions.

Summing over the indexi of Nij in (15), we see that allaj are expressed in terms of
two variablesT andU , with the constantsMj =

∑2n−1
i=1 Nij/(2n − 1),

a−1
j = MjT

−1+ U U = 1

2n − 1

2n−1∑
i=1

a−1
i . (18)

Note that the variablesT andU are symmetric under any permutation ofai ’s. Substituting
the expression ofai ’s into the definition ofT in (15), we have the following relation between
T andU ,

T 2n−1 =
2n−1∏
j=1

(T U +Mj). (19)

From (18) and (19), we see that all variables are expressible in terms of one variable, which
demonstrates that the system of the(2n − 1)-dimensional top is integrable. The explicit
expression for the quadrature whose evaluation solves the top is given in section 2.2.
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2.2. General solution

The time derivatives ofT andU are derived from the equations of motion (12),

Ṫ = T S U̇ = −US + 1. (20)

We introduce a variableR(t) = T (t) U(t), whose time derivative is given as

Ṙ = T . (21)

SubstitutingR = T U into (19) and (18), we have

T =
( 2n−1∏
j=1

(R +Mj)

) 1
2n−1

(22)

and

aj = T

(R +Mj)
= (

∏2n−1
k=1 (R +Mk))

1
2n−1

(R +Mj)
. (23)

Using (21) and (22), we obtain a first-order equation forR(t),

Ṙ =
( 2n−1∏
j=1

(R +Mj)

) 1
2n−1

(24)

which is non-hyperelliptic except for the three-dimensional(n = 2) case. The integral
associated with this equation can be shown to correspond to a Riemann surface with genus
g = (2n−1 − 1)2; the order 1/2n−1 in the RHS of (24) means that we need 2n−1 complex
surfaces, each of which has 2n−1 cuts since the order ofR is 2n − 1 inside the bracket of
the RHS.

3. Further generalizations

It would be natural to expect that the examples of this note could be further generalized to
the discussion of evolution equations fork

n−1
k−1 variables, corresponding to tops based upon

the spaceZkPn−1. Despite many efforts, we have as yet been unable to demonstrate a set
of integrable equations for integralk > 2 except for the case wheren = 2 and there are
k+1 points lying on a line. Then one possibility for a set of integrable evolution equations
is [6]

d

dt
ωi =

∏
j 6=i

ωj (i = 1, . . . , k + 1). (25)

These equations are reduced to a hyperelliptic differential equation for ag = k−1 Riemann
surface.

An alternative approach to further generalization would be based upon Lie algebras.
It was pointed out to us by Jan Govaerts, and elaborated in further discussions with Ryu
Sasaki that the RHS of our equations for the(2n − 1)-dimensional top can be interpreted
as a product rule among weight vectors in theBn = SO(2n + 1) Lie algebra; the product
of two spinor representations with the dimension 2n gives 2n− 1 positive weight vectors in
the first quadrant in the spaceRn, m1k1 + · · · + mnkn (mi = 0, 1), where{k1, . . . ,kn} is
an orthonormal basis inRn. These 2n−1 vectors just correspond to the 2n−1 points in the
spaceZ2Pn−1. It is intriguing to explore a generalization of this result to the other classical
Lie algebras and their representations. Work along these lines is under consideration.
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